13 research outputs found

    Multi-layer carbon fiber reinforced plastic characterization and reconstruction using eddy current pulsed thermography

    Get PDF
    Ph. D. Thesis.Carbon fibre composite materials are widely used in high-value, high-profit applications, such as aerospace manufacturing and shipbuilding – due to their low density, high mechanical strength, and flexibility. Existing NDT techniques such as eddy current testing suffers from electrical anisotropy in CFRP (carbon fibre reinforced plastics). Ultrasonic is limited by substantial attenuation of signal caused by the multilayer structure. The eddy current pulsed thermography has previously been applied for composites NDE (non-destructive evaluation)such as impact damage, which has the ability for quick and accurate QNDE(quantitative non-destructive evaluation) inspection but can be challenging for detection and evaluation of sub-surface defects, e.g., delamination and debonding in multiple layer structures. Developing QNDE solutions using eddy current thermography for addressing subsurface defects evaluation in multi-layer and anisotropic CFRP is urgently required. This thesis proposes the application of eddy current pulsed thermography (ECPT) and ECPuCT (eddy current pulse compression thermography) for tackling the challenges of anisotropic properties and the multi-layer structure of CFRP using feature-based and reconstruction-based QNDE and material characterisation. The major merit for eddy current heating CFRP is the volumetric heating nature enabling subsurface defect detectability. Therefore, the thesis proposes the investigation of different ECPT and their features for QNDE of various defects, including delamination and debonding. Based on the proposed systems and QNDE approach, three case studies are implemented for delamination QNDE, debonding QNDE, conductivity estimation and orientation inverse reconstruction using the two different ECPT systems and features, e.g., a pulse compression approach to increase the capability of the current ECPT system, the feature-based QNDE approach for defect detection and quantification, and reconstruction-based approach for conductivity estimation and inversion. The three case studies include 1) investigation of delamination with different depths in terms of delamination location, and depth quantification using K-PCA, proposed temporal feature-crossing point feature and ECPuCT system; 2) investigation of debonding with different electrical and thermal properties in terms of non-uniform heating pattern removal and properties QNDE using PLS approaches, impulse response based feature

    Directional eddy current probe configuration for in-line detection of out-of-plane wrinkles

    Full text link
    Real-time monitoring of carbon fibre composites during Automated Fibre Placement (AFP) manufacturing remains a challenge for non-destructive evaluation (NDE) techniques. An directional eddy-current (EC) probe with asymmetric transmit and differential receive (Tx-dRx) coils is designed, constructed and characterized to evaluate the detectability of out-of-plane wrinkles. Initial studies were conducted to determine suitable excitation frequencies and to analyse the impact of relative orientations of driver and pickup coils on wrinkle detectability. The probe configurations are evaluated experimentally and employ a new finite element modelling approach to better understand the relationship between eddy-current density and defect detection. The findings indicate that a probe configuration with an asymmetric driver coil normal to the material surface and aligned with the fibre directions, and with differential pickup coils 90 degrees to the scanning direction, shows the best capability for out-of-plane wrinkle detection, with SNR >20 for wrinkles over 1.3 mm in amplitude

    Identifying Population Hollowing Out Regions and Their Dynamic Characteristics across Central China

    Get PDF
    Continuous urbanization and industrialization lead to plenty of rural residents migrating to cities for a living, which seriously accelerated the population hollowing issues. This generated series of social issues, including residential estate idle and numerous vigorous laborers migrating from undeveloped rural areas to wealthy cities and towns. Quantitatively determining the population hollowing characteristic is the priority task of realizing rural revitalization. However, the traditional field investigation methods have obvious deficiencies in describing socio-economic phenomena, especially population hollowing, due to weak efficiency and low accuracy. Here, this paper conceives a novel scheme for representing population hollowing levels and exploring the spatiotemporal dynamic of population hollowing. The nighttime light images were introduced to identify the potential hollowing areas by using the nightlight decreasing trend analysis. In addition, the entropy weight approach was adopted to construct an index for evaluating the population hollowing level based on statistical datasets at the political boundary scale. Moreover, we comprehensively incorporated physical and anthropic factors to simulate the population hollowing level via random forest (RF) at a grid-scale, and the validation was conducted to evaluate the simulation results. Some findings were achieved. The population hollowing phenomenon decreasing gradually was mainly distributed in rural areas, especially in the north of the study area. The RF model demonstrated the best accuracy with relatively higher R2 (Mean = 0.615) compared with the multiple linear regression (MLR) and the geographically weighted regression (GWR). The population hollowing degree of the grid-scale was consistent with the results of the township scale. The population hollowing degree represented an obvious trend that decreased in the north but increased in the south during 2016–2020 and exhibited a significant reduction trend across the entire study area during 2019–2020. The present study supplies a novel perspective for detecting population hollowing and provides scientific support and a first-hand dataset for rural revitalization

    Inductive Thermography

    No full text

    Current Perspectives on Nucleus Pulposus Fibrosis in Disc Degeneration and Repair

    No full text
    A growing body of evidence in humans and animal models indicates an association between intervertebral disc degeneration (IDD) and increased fibrotic elements in the nucleus pulposus (NP). These include enhanced matrix turnover along with the abnormal deposition of collagens and other fibrous matrices, the emergence of fibrosis effector cells, such as macrophages and active fibroblasts, and the upregulation of the fibroinflammatory factors TGF-β1 and IL-1/-13. Studies have suggested a role for NP cells in fibroblastic differentiation through the TGF-βR1-Smad2/3 pathway, inflammatory activation and mechanosensing machineries. Moreover, NP fibrosis is linked to abnormal MMP activity, consistent with the role of matrix proteases in regulating tissue fibrosis. MMP-2 and MMP-12 are the two main profibrogenic markers of myofibroblastic NP cells. This review revisits studies in the literature relevant to NP fibrosis in an attempt to stratify its biochemical features and the molecular identity of fibroblastic cells in the context of IDD. Given the role of fibrosis in tissue healing and diseases, the perspective may provide new insights into the pathomechanism of IDD and its management
    corecore